- ALMA Workshop 2018a -- "ALMA-SOL-CDAW19" TUTORIAL OF SOLAR IMAGE SYNTHESIS USING CASA

Masumi Shimojo ALMA project, National Astronomical Observatory of Japan

2019/01/15 @ MTK/NAOJ

TODAY'S TOPICS

- How to obtain solar ALMA data from ALMA Archive?
- How to calibrate ALMA solar data?
- How to synthesize solar images from ALMA data?
- Advanced calibration (What is "self-calibration"?)
- To avoid the void located at the center of u-v plane...

BEFORE STARTING THE TUTORIAL

- Login to an ADC terminal front of you.
- Make your working directory under /work.
 - It is good that the directory name is your ID.
- Move your working directory.
- Executing the following command on the working directory.
 - rsync -avz /lfs01/almasolcdaw19/tutorial/tutorial_datasets .

ENVIRONMENTS FOR ALMA DATA REDUCTION AND IMAGE SYNTHESIS

Web applications

- ALMA Archive, SnooPI (tracking the status of your projects), Helpdesk, etc.
- Recommend using the "FireFox" web browser because the ALMA observatory does not check the web applications on the other browsers.

Data reduction and image synthesis

- CASA (Common Astronomy Software Applications)
 - Python/IPython-based application
 - OS: "Red Hat Enterprise Linux" or "macOS"
 - RedHat clones (Fedora/CentOS/Science Linux) are OK for CASA.
 - You can get the package from <u>https://casa.nrao.edu/</u> with free.
 - CASA is already installed to all ADC servers and terminals.
 - The requirement of "Disk I/O" is so serious. The data have to be located in local disks. <u>Never put the data on network file systems (NFS, samba, etc.).</u>

HOW TO OBTAIN SOLAR ALMA DATA FROM ALMA ARCHIVE?

Start "FireFox" and

Go to "ALMA Science Portal"

https://almascience.nao.ac.jp/

LIST OF CYCLE4 DATASET

 Shimojo created the google spreadsheet of all ALMA solar data obtained in Cycle 4.

<u>https://docs.google.com/spreadsheets/d/</u> <u>1xVc0eSpd42hKjt5Gdv9IebfJRupdBTsbyYsYfhAkfe4/</u> <u>edit?usp=sharing</u>

• Shimojo might continue to create such a spreadsheet for future Cycles.

EXAMPLE: PROJECT 2016.1.00202.S QUIET SUN BAND3 DATA

Files

-rw-r--r-- 1 masumism adcusers 665 Jan 9 15:46 2016.1.00202.S.readme.txt

README file

-rw-r--r-- 1 masumism adcusers 77M Jan 9 15:47 2016.1.00202.S_uid___A001_X8a5_X3e_001_of_001.tar

The meta data of the interferometric observation

-rw-r--r-- 1 masumism adcusers 9.4G Jan 9 15:47 2016.1.00202.S_uid___A002_Xbfb22d_X56f4.asdm.sdm.tar

The raw data of the interferometric observation

-rw-r--r-- 1 masumism adcusers 274M Jan 9 15:47 2016.1.00202.S_uid___A002_Xbfb22d_X58cf.asdm.sdm.tar

The raw data of the single-dish observation

• After "untar"ing the meta and raw data of the interferometric observation.

HOW TO CALIBRATE ALMA SOLAR DATA? WHAT IS THE CALIBRATION OF VISIBILITY DATA?

電波干渉計とは?

一つの基線で空を見ると?

*厳密にはDは天体から見た射影長

一つの基線で空を見ると?

一つの基線で空を見ると?

資料作成協力:永井洋 13

Visibility 干渉計の観測量Visibility $V(u,v) = \iint I(x,y) \exp(i(ux+vy)) dxdy$

。u,vは投影基線長を波長で規格化 ()

。 別名:空間周波数

※厳密には天体から見て常に同一平面にアンテナ群が存在しているわけではないので、空間周波 数を表現するにはuv面に直交する軸wが必要になる。しかし、wの影響は微々たるものなので、 無視をしても実際の観測にはほとんど影響しない

実際の観測では有限の(u,v)データ点(=有限の基線長 =有限のアンテナ)で、Visibilityをサンプリングする

 $\Rightarrow V_{obs}(u,v) = S(u,v)V(u,v)$

Visibilityのサンプリング関数 → アンテナの数とその配置に依存

観測量Visibility
$$V(u,v) = \iint I(x,y) \exp(i(ux+vy)) dx dy$$

理想的には、

$$V_{obs} = V_{real}$$

実際には、

$$V_{obs} \neq V_{real}$$
, $V_{obs} = GV_{real}$

・大気・装置起因で"G"(ゲイン)が加わる
・Gは複素量(振幅と位相)

Gを解く作業が"Calibration"

Gの主要なファクター

大気の影響、特に水蒸気

• 水蒸気による吸収:電波強度が変化

• 水蒸気量の変化:電波の位相が変化

装置の影響

- 装置のimperfectness/stability: 強度・位相が変化(e.g., アンテ ナの熱変形・重力変形)
- 。基線長測定エラーによる位相変動
- ・受信帯域全体の応答は必ずしもフラットではない:帯域特性を生む
- etc

HOW TO DO THE CALIBRATION?

1.Move to the "script" directory that is located under the "untar" directory.2.Start CASA

- [Caution] The usable version of CASA for calibrating the dataset obtained in each Cycle is determined!
- Cycle 4: CASA 4.7.2
 - [command on MDAS] /usr/local/casa/casa-release-4.7.2-el7/bin/casa
- Cycle 5: CASA 5.1.0
 - [command on MDAS] /usr/local/casa/casa-release-5.1.0-el7/bin/casa
- Current version CASA 5.4.0
 - [command on MDAS] casa
- To synthesize images, we use the current one (5.4.0) in this workshop.
- 3. Execute the calibration script
 - CASA <2>: execfile('scriptForPI.py')
- 4. Wait one night. (In case of MDAS)

EXAMPLE: PROJECT 2016.1.00202.S QUIET SUN BAND3 DATA

• Files

-rw-r--r-- 1 masumism adcusers 665 Jan 9 15:46 2016.1.00202.S.readme.txt

README file

-rw-r--r-- 1 masumism adcusers 77M Jan 9 15:47 2016.1.00202.S_uid___A001_X8a5_X3e_001_of_001.tar

The meta data of the interferometric observation

-rw-r--r-- 1 masumism adcusers 9.4G Jan 9 15:47 2016.1.00202.S_uid___A002_Xbfb22d_X56f4.asdm.sdm.tar

The raw data of the interferometric observation

-rw-r--r-- 1 masumism adcusers 274M Jan 9 15:47 2016.1.00202.S_uid___A002_Xbfb22d_X58cf.asdm.sdm.tar

The raw data of the single-dish observation

• After "untar"ing the meta and raw data of the interferometric observation.

AFTER ONE NIGHT

HOW TO SYNTHESIZE SOLAR IMAGES FROM ALMA DATA?

IMAGE SYNTHESIS

- At first, Inverse Fourier Transfer
 - $V_{obs}(u,v) = S(u,v)V(u,v)$
 - S(u,v): Sampling function depended on the location and number of antennas...
 - The quality of images created only by Inverse Fourier Transfer is not good.
 - Deconvolution
 - CLEAN IN Kameno-sensei Lecture Note. @ Kagoshima-U.
 - MEM
 - Sparse Modeling
 - etc...

RSYNC PROCESS FINISHED?

Let's try the image synthesis using CASA

```
tutorial_datasets/
|-- TP
|-- X5647_11_normcal.ms
|-- X5647_F
|-- X5647_scriptForSelfCal_Mov_moduse.py
|-- feather_pro.py
|-- qa
```

`-- scriptForImaging.py

PLAGE WITH BAND6

- Project ID: 2016.1.00050.S
- PI: Bart De Pontieu
- Single-Pointing
- Observing Period: 2017-04-22 15:58:58 - 16:43:34
- Size of the synthesized beam
 - Major: 0.91 arcsec
 - Minor: 0.72 arcsec
- Time cadence: ~2 seconds

RESULT OF IMAGE SYNTHESIS

Depending on the operation being run, a subset of the following output images will be written to disk.

imagename = 'try'

try.psf	Point Spread Function
try.pb	Primary Beam
try.residual	Residual Image (or initial Dirty Image)
try.model	Model Image after deconvolution
try.image	Restored output image
try.image.pbcor	Primary Beam corrected image
try.mask	Deconvolution mask
try.sumwt	A single pixel image containing sum of weights per plane
try.weight	Image of un-normalized sum of PB-square (for mosaics and A-Projection)

- Viewer command of CASA is "viewer"
- casa<?>: viewer

*.image (image)

*.model (CLEAN components)

*.psf (Synth.Beam)

*.pb (Primary Beam)

*.residual (Residual)

*.pbcor (PB corrected img.)

WAHT'S HAPPEN? MULTI-STEPS SELF-CALIBRATION!!

The both images are originated from the same data...

WHAT IS THE SELF-CALIBRATION?

-AN EXAMPLE OF SELF CALIBRATION-CYGNUS "A" OBSERVED WITH VLA

Dirty map (Only Inverse FT)

CLEAN deconvolution

Self-Cal. + CLEAN

Kellermann, K. I. & Moran, J. M. 2001

MULTI-STEPS SELF-CALIBRATION FOR SOLAR DATA (SHIMOJO VERSION)

DIFFERENCE OF DATA POINTS OBTAINED FROM ONE SCAN AND 2 SEC

ISSUES OF SELF CALIBRATION

- The self-calibration does not works well for MOSAIC observations, because the time cadence of the MOSAIC maps is not high (> 1mins).
- The "multi-steps" self-calibration does not works well for limb observations, because the signals from the limb are too strong and cleans the fine structures above the limb caused by the multi-step method.
 - I used the normal self-calibration for the limb data analyzed in the workshop.
- The effect of the self-calibration for Band3 data is not so large because the phase of Band3 data is already good in most cases.

TO AVOID THE VOID LOCATED AT THE CENTER OF U-V PLANE...

VOID OF THE DATA POINTS ON U-V PLANE

- Antennas cannot approach closer than 7m (ACA), physically.
- The limitation causes the void of the data point at the center of u-v plane.

SINGLE-DISH SOLAR OBSERVATIONS WITH ALMA

- Fast-scan imaging
 - double-circle pattern
 - FoV: 2400"Φ
 - One map per ~7mins

Double Circle Pattern

White et al. 2017

COORDINATE OF THE FITS FILES

- The coordinate of the FoV center in the ALMA FITS is written using "RA/DEC" coordinate system.
- To convert from RA/DEC to Heliocentric (XCEN/YCEN), we can use the following web page.
 - <u>http://celestialscenes.com/alma/convert/</u>
 - The RA/DEC coordinate of the FoV center can be obtain from the FITS header.
 - The "reference time" is needed. The time can be seen in the google spreadsheet.
- The image have to be rotated using P angle. P angle can be estimated using IDL-SSW routine "get_rb0p" and the reference time.

END