ALMAでみる黒点

京都大学附属天文台 一本 潔

ALMA太陽観測ワークショップ@京都 2012年9月3日

太陽黒点は磁気流体現象の宝庫;

磁気対流-微細構造形成、振動・波動・衝撃波、 ジェット・磁気リコネクション、加熱・粒子加速

ALMA performance

Freq. [GHz]	Spatial resolution [arcsec] (max. baseline = 2km)	FOV [arcsec]
100	0.38	62
300	0.126	18
950	0.04	7

Fast switching?

- Time resolution
 - 32msec or 30sec?

ミリ波放射機構

Where is the mm/sub-mm emission layer except flares?

The mm/sub-mm emission from non-flare sun is thermal continuum from around [T = 1] layer = lower chromosphere.

ALMA FOV

ALMA の特徴

- 高空間分解能
- Thermal thick でT_{min}より上空の温度構造
- LTE, simple emission mechanism
- 一部非熱的放射
- 高いダイナミックレンジ >1000 (?)
- 5分ごとによそ見?

ターゲット

- 黒点微細構造
 - 半暗部ジェット, light bridge, umbral dots,
- 三次元Canopy構造、彩層流(逆エバーシェッド)
- 黒点振動, wave
- ブライトニング、粒子加速、磁場構造
- 大気モデル
- 分子線の同定、ドップラー

黒点における光球とコロナ境界領域の探査 多様な現象、 一般大気とは違った環境 ある意味わかりやすい磁場構造

半暗部の磁場・速度構造

ALMA でみる高さは磁場はほぼ 一様。しかし密度構造はガスを 注入する領域のサイズで決まる ので、いくらでも小さな構造はあ り得る。

Borrero etal., 2008, A&A

Penumbral micro jets

Call H movie

Katsukawa et al. (2007)

- Length: 1" ~ 5" (1000km ~ 4000km), Width: ~ 0.4" (300km)
- Duration: Shorter than 1 min
- Observed everywhere above the penumbra!

Interpretation: Magnetic field reconnection in the uncombed 3D penumbral configuration.

ALMA半暗部ジェットの観測

- リコネクションの現場は深すぎておそらく ALMAでは見えない(はず)。
- もし見えたら半暗部磁場構造の再検証必要。
- ジェットに伴う何らかの増光は観測されると期 待できる。
- 高空間分解能によるジェットの横方向の運動、噴出速度、密度分布、捻れ構造、など。
- 高ダイナミックレンジによるリム観測。
- 時間分解能<10s 必要

ライトブリッジ

3D structure of light bridge Lites etal, 2004, Solar Physics Jurcak etal 2006.

ライトブリッジからのジェット

ライドブリッジのジェット

カーテン状のジェット

- ひのでよりも高い空間分解能によるジェット足下の微細構造
 - → ジェットの真の太さ
 - → 磁気リコネクション要素のサイズ
- ・捻れ的構造

umbral dotの磁場と速度場

磁場強度が弱く(Fel6302で17Gauss)、水平に傾いていて(0.6°)、上昇流(28m/s)を伴う

H.Watanabe et al. (2008) in preparation center-to-limb variation によるcusp型磁力線の 証拠

Umbral flush の微細構造

Socas Navarro etal. 2009

SOTの分解能以下の構造 早い変化、~30km/sの移動

逆エバーシェッド流

known as a gas flow towards the umbra in chromospheric layer over the penumbra.

> Doppler signal in penumbra Bray & Loughhead 1965

Questions;

- Does the invers Evershed flow take place in the elevated magnetic field component of the interlocking penumbral structure?
- Is the flow intermittent or stationary?
- What is the origin of the flow?

逆エバーシェッド流; SOT観測

Na D Dopp. <u>+</u> 320mA

Na D Dopp. <u>+</u> 80mA

Na D Dopp. <u>+</u> 320mA (Hinode/SOT/NFI)

Photospheric Evershed flow

Na D Dopp. <u>+</u> 240mA (Hinode/SOT/NFI)

Na D Dopp. <u>+</u> 160mA (Hinode/SOT/NFI)

Na D Dopp. <u>+</u> 80mA (Hinode/SOT/NFI)

Inverse chromospheric Evershed flow

Spatial correlation, DC side

Spatial correlation, limb side

2011.04.26

Dopp.gram Time slice

← Disk center

limb →

← Disk center

limb \rightarrow

Running penumbral wave is one of the dominant source of Doppler signal in <u>+</u>80mA. Inverse Evershed flow is not visible in timeslice.

超音速流をドライブするメカニズムは何?

thin flux tube 近似 → 1次元流体運動方程式

- 与えるのは定常解
- 外側のfoot point の磁場が常に umbra側 よりも強いことを要求
- 原理的に、、、

Meyer & Shimidt, 1968, Astron.J, 73, S72 Thomas, 1981, in "The Physics of sunspots" Thomas, 1988, ApJ, 333, 407 Montesinos and Thomas, 1993, ApJ, 402, 314 Montesinos and Thomas, 1997, Nature, 390,4

ALMA 逆エバーシェッド流の観測

- 高い空間分解能により、流れるガス(むらが あるとして)を追跡。
- メカニズム:サイフォンフローが主流だが。。
 速度分布、衝撃波の存在、等の検証。
- ・ 逆エバーシェッド流はどこを流れているか?
- 半暗部の磁場構造は?

Magnetic Canopy

Giovanelli and Ronald 1982

半暗部形成の前駆構造

2009-12-31T01:58:40.530 2009-12-31T03:58:43.429 2009-12-31T06:15:03.982 2009-12-31T08:15:05.291 2009-12-31T10:15:06.581

Shimizu etal 2012

半暗部形成の前駆構造

Canopyの形成、逆エバーシェッド流はいつ始まるのか?

黒 点 の 衰 退 と MMF

Moving Magnetic Feature (MMFs, Harvey & Harvey 1973)

2007.1.4 Hinode/FG

Moving Magnetic Feature (MMF)

Penumbra dark filament と bright filament は相互に混ざらない別の磁場

Weiss, etal, ApJ, 2004, 600, 1073-1090

MMFで運ばれる磁束は 黒点の減衰率と一致する Harvey & Harvey 1973, Kubo etal 2008 黒点の減衰率よりも有意におおきい Multinez Pillet 2002, Kubo etal 2007

Moving Magnetic Feature (MMF)

AR 8375 (CW) AR 8525 (CCW)

Yurchyshyn etal, 2001

MMFのペアは超半暗部の筋方 法に並んでいる。 Canopy構造から生じるUloop?

暗部に彩層。スピキュールもリコネクションも無いのに。 暗部モデルは信頼できるか?

大気モデル

- ALMA 全周波数で黒点は暗く見えるのか?
- Wilson depression は見えるか?
- C-to-L variation からLTE (S=B)の仮定で信頼
 度の高い暗部彩層モデルができる。
- ・ 暗部の彩層温度構造は本来の彩層加熱問題にヒントを与えるはず。

黒点には多数の分子が存在

 CN, TiO, CaH, CH, MgH, FeH, AlH, AlF CN, C2, MgO, ZrO, CO, VO, CrH, H₂, H₂O,,,,

eg. Shanmugavel etal 2008

B² vs. T

低温部で温度低下を伴わない磁場の上昇

Jaeggli, Lin, and Uitenbroek, 2012

分子の重要性

分子が形成されると、

- 粒子数減少→圧力減少→収縮→磁場増大
- ・振動、回転自由度→比熱の上昇
 →黒点の熱力学的構造、寿命に重要な役割
- H₂分子が支配的、しかしH₂は可視一近赤外
 域にラインなし
- ALMAによる分子ラインの観測は可能か?
 データベース調査。。

半暗部短命增光 > 粒子加速?

半暗部短命增光 → 粒子加速?

May give a hint of

- magnetic field configuration of penumbra,
- particle acceleration and their transport.

Not studied yet.

ALMA ブライトニングの観測

- Band0-3(?) によるジャイロシンクロトロン放射をまずは検出、
- タイミング、スペクトルのリボンに沿った分布
- なぜギザギザの形になるか?
- 加速領域の広がり or 粒子拡散による効果?
 - → 半暗部磁場構造の検証。

まとめ: ALMAで狙う黒点の課題

- 高空間分解能を生かした微細構造の研究、とくにジェット、ガス流の3次元構造
- LTEにもとづく黒点大気構造、彩層加熱の問題へ
- ・非熱的放射の微細構造から粒子加速、磁場 構造の研究
- 分子ラインによる黒点熱力学構造、ドップラー 信号によるダイナミクスの研究(?)